3.113 \(\int \frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx\)

Optimal. Leaf size=159 \[ \frac{a \sqrt{c+d x^2} \sqrt{\frac{a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \Pi \left (\frac{b c}{b c-a d};\sin ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{b x^2+a}}\right )|\frac{c (b e-a f)}{(b c-a d) e}\right )}{\sqrt{c} \sqrt{e+f x^2} \sqrt{b c-a d} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

[Out]

(a*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticPi[(b*c)/(b*c - a*d), ArcSin[(Sqrt[b*c - a*d]
*x)/(Sqrt[c]*Sqrt[a + b*x^2])], (c*(b*e - a*f))/((b*c - a*d)*e)])/(Sqrt[c]*Sqrt[b*c - a*d]*Sqrt[(a*(c + d*x^2)
)/(c*(a + b*x^2))]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.135229, antiderivative size = 159, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.059, Rules used = {553, 537} \[ \frac{a \sqrt{c+d x^2} \sqrt{\frac{a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \Pi \left (\frac{b c}{b c-a d};\sin ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{b x^2+a}}\right )|\frac{c (b e-a f)}{(b c-a d) e}\right )}{\sqrt{c} \sqrt{e+f x^2} \sqrt{b c-a d} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2]/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

(a*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticPi[(b*c)/(b*c - a*d), ArcSin[(Sqrt[b*c - a*d]
*x)/(Sqrt[c]*Sqrt[a + b*x^2])], (c*(b*e - a*f))/((b*c - a*d)*e)])/(Sqrt[c]*Sqrt[b*c - a*d]*Sqrt[(a*(c + d*x^2)
)/(c*(a + b*x^2))]*Sqrt[e + f*x^2])

Rule 553

Int[Sqrt[(a_) + (b_.)*(x_)^2]/(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[(a*Sqrt
[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))])/(c*Sqrt[e + f*x^2]*Sqrt[(a*(c + d*x^2))/(c*(a + b*x^2))]),
Subst[Int[1/((1 - b*x^2)*Sqrt[1 - ((b*c - a*d)*x^2)/c]*Sqrt[1 - ((b*e - a*f)*x^2)/e]), x], x, x/Sqrt[a + b*x^2
]], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2} \sqrt{e+f x^2}} \, dx &=\frac{\left (a \sqrt{c+d x^2} \sqrt{\frac{a \left (e+f x^2\right )}{e \left (a+b x^2\right )}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1-b x^2\right ) \sqrt{1-\frac{(b c-a d) x^2}{c}} \sqrt{1-\frac{(b e-a f) x^2}{e}}} \, dx,x,\frac{x}{\sqrt{a+b x^2}}\right )}{c \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt{e+f x^2}}\\ &=\frac{a \sqrt{c+d x^2} \sqrt{\frac{a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \Pi \left (\frac{b c}{b c-a d};\sin ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{a+b x^2}}\right )|\frac{c (b e-a f)}{(b c-a d) e}\right )}{\sqrt{c} \sqrt{b c-a d} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}} \sqrt{e+f x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0917638, size = 159, normalized size = 1. \[ \frac{a \sqrt{c+d x^2} \sqrt{\frac{a \left (e+f x^2\right )}{e \left (a+b x^2\right )}} \Pi \left (\frac{b c}{b c-a d};\sin ^{-1}\left (\frac{\sqrt{b c-a d} x}{\sqrt{c} \sqrt{b x^2+a}}\right )|\frac{c (b e-a f)}{(b c-a d) e}\right )}{\sqrt{c} \sqrt{e+f x^2} \sqrt{b c-a d} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^2]/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]),x]

[Out]

(a*Sqrt[c + d*x^2]*Sqrt[(a*(e + f*x^2))/(e*(a + b*x^2))]*EllipticPi[(b*c)/(b*c - a*d), ArcSin[(Sqrt[b*c - a*d]
*x)/(Sqrt[c]*Sqrt[a + b*x^2])], (c*(b*e - a*f))/((b*c - a*d)*e)])/(Sqrt[c]*Sqrt[b*c - a*d]*Sqrt[(a*(c + d*x^2)
)/(c*(a + b*x^2))]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [F]  time = 0.062, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{b{x}^{2}+a}{\frac{1}{\sqrt{d{x}^{2}+c}}}{\frac{1}{\sqrt{f{x}^{2}+e}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)

[Out]

int((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b x^{2} + a}}{\sqrt{d x^{2} + c} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{2}}}{\sqrt{c + d x^{2}} \sqrt{e + f x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(1/2)/(d*x**2+c)**(1/2)/(f*x**2+e)**(1/2),x)

[Out]

Integral(sqrt(a + b*x**2)/(sqrt(c + d*x**2)*sqrt(e + f*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b x^{2} + a}}{\sqrt{d x^{2} + c} \sqrt{f x^{2} + e}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(1/2)/(d*x^2+c)^(1/2)/(f*x^2+e)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*x^2 + a)/(sqrt(d*x^2 + c)*sqrt(f*x^2 + e)), x)